
Um Provador de Teoremas Multi-Estratégia
A Multi-Strategy Theorem Prover

Adolfo Gustavo Serra Seca Neto
DAINF - UTFPR

http://www.dainf.ct.utfpr.edu.br/~adolfo

Data desta versão: 14 de novembro de 2008
Date of this version: November 14th, 2008



1

Sobre
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http://www.teses.usp.br/teses/disponiveis/45/45134/tde-04052007-175943/
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Apêndice B

Tableaux for Classical and

Paraconsistent Logics

The method of tableaux is a formal proof procedure existing in many varieties and for

several logics [52]. It is a refutation procedure — that is, in order to prove that a formula

X is valid we try to invalidate its negation. Besides that, tableau systems are expansion

systems, i.e., they are systems that contain a finite set of expansion rules [29]. A tableau

is a tree1 [26] with one or more branches2, whose nodes are lists of formulas. The proof

search procedure of each specific tableau method describes how to construct a tableau

proof (for a list of formulas that one wants to refute) using the expansion rules.

In this appendix we briefly present two tableau systems for classical propositional

logic: analytic tableaux [106] and the KE inference system [29]. After that, we show KE

systems we have developed for mbC and mCi, two paraconsistent logics, and prove some

properties of these systems. We finish by discussing the complexity of some of the logical

systems and proof methods presented.

1In fact, it is better to represent a tableau as a sequence of trees, as it is done in [17], to describe the
history of the derivation.

2Some of the terms used in this appendix will become clear only in Section C.2.1 when we will describe
the KE Proof Search Procedure.
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B.1 Logical Systems

In this section we present some notions3 about logical systems which will be used in

the rest of this thesis. We assume familiarity with the syntax and semantics of classical

propositional logic, from now on denoted by CPL.

The language of every logic L is defined over a propositional signature Σ = {Σn}n∈ω

such that Σn is the set of connectives of arity n. As can be seen in [19], ‘ω’ is the smallest

infinite ordinal, which is the order type of the natural numbers; it can be identified with

the set of natural numbers. Therefore, each Σn is at most enumerable. The cardinality

of each Σn is less than or equal to ℵ0 (the cardinal of the set of natural numbers N [79]);

in fact, each Σn can be written as a family with indices in ω [74].

The set P = {pn : n ∈ ω} is the set of propositional variables (or atomic formulas)

from which we freely generate the algebra For of formulas using Σ. From here on, Σ

will denote the signature containing the binary connectives ‘∧’, ‘∨’, ‘→’, and the unary

connective ‘¬’. By For we will denote the set of formulas freely generated by P over Σ.

In the same spirit, Σ◦ (Σ•) will denote the signature obtained by the addition of a new

unary connective ‘◦’ (‘•’) to the signature Σ, and For◦ (For•) will denote the algebra of

formulas for the signature Σ◦ (Σ•). ‘◦’ and ‘•’ are called, respectively, the ‘consistency’

and ‘inconsistency’ connectives.

The other connectives’ names are the following: ‘∧’ is the ‘and’ connective, also called

‘conjunction’; ‘∨’ is the ‘or’ connective, also called ‘disjunction’; ‘→’ is the ‘implies’

connective, also called ‘implication’; and ‘¬’ is the ‘not’ connective, also called ‘negation’.

Given a formula A, the set of its subformulas, sf(A), is defined recursively in the

following way:

• If p is a propositional atom, then sf(p) = {p};

• If A is ¯A1, where ¯ is a unary connective, then sf(A) = {A} ∪ sf(A1);

• If A is A1®A2, where ® is a binary connective, then sf(A) = {A}∪ sf(A1)∪ sf(A2).

3Most of the notions presented here were taken from [18].
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Let ℘(X) be the powerset of a set X. As usual, given a set For of formulas, we say

that ` defines a (Tarskian) consequence relation on For, where `⊆ ℘(For) × For, if the

following clauses hold, for any formulas A and B, and subsets Γ and ∆ of For (formulas

and commas at the left-hand side of ` denote, as usual, sets and unions of sets of formulas)

[18]:

A ∈ Γ implies Γ ` A (reflexivity)

(∆ ` A and ∆ ⊆ Γ) implies Γ ` A (monotonicity)

(∆ ` A and Γ, A ` B implies Γ, ∆ ` B (cut)

A (Tarskian) logic L is a structure of the form 〈For,`〉, containing a set of formulas

and a consequence relation defined on this set [18]. A logical system is a pair (`, S`),

where ` is a consequence relation (a set of pairs) and S` is an algorithmic system for

generating all the pairs in that relation [54]. For a given consequence relation, there can

be many algorithmic systems. For CPL, for instance, we have axiomatic systems (see

Section B.1.1), the Davis-Putnam procedure [33, 32], the Resolution method [100] and

many others.

B.1.1 Classical Propositional Logic

According to [17], the axiomatic method is the oldest known proof method. An ax-

iomatic system [78] is composed of a set of axioms and a set of inference rules. An axiom

is a starting point for deducing logically valid propositions, a formula which is taken for

granted as valid. And an inference rule is a relation between formulas. As stated in [78],

for each inference rule R, there is a unique positive integer j such that for every set of

j formulas and each formula C, one can effectively decide whether the given j formulas

and each C are related to C in R , and, if so, C is said to follow from or to be a direct

consequence of the given formulas by virtue of R. In an inference rule, the j formulas are

called premises and C is called the conclusion of the inference rule.

An axiom schema is a formula such that any formula obtained by one or more sub-

stitutions in it is taken to be an axiom [67]. Similarly, an inference rule schema is an

inference rule where one or more substitutions can be performed on the formulas in the
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inference rule relation (see [17]).

The following definitions were taken from [78]: a proof in an axiomatic system AS is

a sequence F1, . . . , Fn of formulas such that, for each i, either Fi is an axiom of AS or

Fi is a direct consequence of some of the preceding formulas in the sequence by virtue

of one of the inference rules of AS. A theorem of AS is a formula F such that F is the

last formula of some proof in AS. A formula C is said to be a consequence in AS of a

set Γ of formulas if and only if there is a sequence F1, . . . , Fk of formulas such that C is

Fk and, for each i, either Fi is an axiom or Fi is in Γ, or Fi is a direct consequence by

some inference rule of some of the preceding formulas in the sequence. Such a sequence

is called a proof (or deduction) of C from Γ. The members of Γ are called the hypotheses

or premises of the proof.

Given an axiomatic system for a logic L, we write Γ `L A to say that there is proof in L

of A from the premises in Γ [18]. Axiomatization is the process of defining an axiomatic

system for a given logical system. Classical propositional logic can be axiomatized in

several ways. The following is an axiomatization for CPL [18] that contains axiom and

inference rule schemas in the signature Σ:

Axiom schemas:

(Ax1) A → (B → A)

(Ax2) (A → B) → ((A → (B → C)) → (A → C))

(Ax3) A → (B → (A ∧B))

(Ax4) (A ∧B) → A

(Ax5) (A ∧B) → B

(Ax6) A → (A ∨B)

(Ax7) B → (A ∨B)

(Ax8) (A → C) → ((B → C) → ((A ∨B) → C))

(Ax9) A ∨ (A → B)

(Ax10) A ∨ ¬A

(exp) A → (¬A → B)

Inference rule schema:

(MP)
A, A → B

B
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Let 2
def
= {0, 1} be the set of truth-values, where 1 denotes the ‘true’ value and 0 denotes

the ‘false’ value. By defining a valuation, we can inductively define the truth-value of a

formula from the truth-value of its propositional variables. Below we present a definition

of a valuation for CPL:

Definition B.1.1. [18] A CPL-valuation is any function v : For −→ 2 subject to the

following clauses:

(v1) v(A ∧B) = 1 iff v(A) = 1 and v(B) = 1;

(v2) v(A ∨B) = 1 iff v(A) = 1 or v(B) = 1;

(v3) v(A → B) = 1 iff v(A) = 0 or v(B) = 1;

(v4) v(¬A) = 1 iff v(A) = 0.

A formula X is said to be satisfiable if truth-values can be assigned to its propositional

variables in a way that makes the formula true, i.e. if there is at least one valuation such

that v(X) = 1. A formula is a tautology if all possible valuations make the formula true.

In CPL, for instance, A ∨ B is satisfiable, but it is not a tautology, while A ∨ ¬A is a

tautology.

Let Γ be a set of formulas in For, and A a formula in For. We say that A is a semantical

consequence of Γ (denoted by Γ |= A) if for any valuation v we have the following [17]:

if v(B) = 1 for all B in Γ, then v(A) = 1.

The CPL axiomatization we have presented above is sound and complete with re-

spect to the semantical consequence relation presented above. That is, for any Γ and A,

Γ `CPL A implies Γ |=CPL A (soundness [17]). And Γ |=CPL A implies Γ `CPL A (strong

completeness [17]).

B.1.2 Logics of Formal Inconsistency

Logics of Formal Inconsistency (LFIs) are a class of paraconsistent logics. Below we

reproduce a short definition of paraconsistent logics taken from [42]:
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A theory T is said to be inconsistent (contradictory) if it has as theorems

a formula and its negation; otherwise, T is consistent (non-contradictory). A

theory T is said to be trivial if every formula of its language is a theorem;

otherwise T is non-trivial.

If a theory T has as its underlying logic classical logic, the deduction of a

contradiction leads to its trivialization.

A logic is paraconsistent if it can be used as the underlying logic to incon-

sistent but non-trivial theories, which we call paraconsistent theories.

Logics of Formal Inconsistency are paraconsistent logics that internalize the notions

of consistency and inconsistency at the object-language level (read more about the foun-

dations of LFIs in [14]). Below we present some definitions (taken from [18]) which are

necessary to give a formal characterization of LFIs.

The Principle of Explosion states that a logic L is explosive when ∀Γ∀A∀B(Γ, A,¬A `
B). It is well known that CPL is explosive. To define a Gentle Principle of Explosion,

we first have to define Gently Explosive Theories. Consider a (possibly empty) set ©(A)

of formulas which depends only on the formula A. This is the set of formulas that, along

with A and ¬A, makes a given theory Γ explode. We will call a theory Γ gently explosive

(with respect to ©(A)) if there are formulas A and B such that the following hold:

1. ©(A), A 6` B;

2. ©(A),¬A 6` B; and

3. ∀A∀B(Γ,©(A), A,¬A ` B).

The Gentle Principle of Explosion states that a logic L is said to be gently explosive

when there is a set ©(A) such that all of the theories of L are gently explosive (with

respect to ©(A)). Finally, a Logic of Formal Inconsistency is defined as any logic in

which the Principle of Explosion does not hold, but the Principle of Gentle Explosion

does.
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B.1.3 mbC, A Fundamental LFI

The logic mbC is the weakest LFI based on classical logic [18]. Any LFI based on

classical logic can be axiomatized starting from positive classical logic (CPL+), whose

axiomatization is that of CPL without the (exp) axiom schema. mbC is the weakest

of such logics because all other LFIs based on classical logic presented in [18] prove

more theorems. mbC axiomatization is obtained from CPL+’s axiomatization, over the

signature Σ◦, by adding the following axiom schema:

(bc1) ◦A → (A → (¬A → B))

The following valuation for mbC was presented in [18]:

Definition B.1.2. An mbC-valuation is any function v : For◦ −→ 2 subject to (v1)-

(v3) from Definition B.1.1 and the following clauses:

(v4’) v(¬A) = 0 implies v(A) = 1;

(v5) v(◦A) = 1 implies v(A) = 0 or v(¬A) = 0.

The definition of satisfiability in Section B.1.1 also holds for mbC. For instance, A∨¬A

is a tautology in CPL, but not in mbC. The formula ¬(A∧¬A∧◦A) is an mbC-tautology.

The intended reading of ◦A is ‘A is consistent’. In mbC, ◦A is logically independent from

¬(A ∧ ¬A), that is, ◦ is a primitive unary connective, not an abbreviation depending on

conjunction and negation, as it happens in da Costa’s Cn hierarchy of paraconsistent

logics [27].

If `mbC denotes the consequence relation of mbC, then we obtain, by (MP):

◦ A,A,¬A `mbC B (B.1)

The Finite Gentle Principle of Explosion says that a logic L will be said to be finitely

gently explosive when there is a finite set ©(A) such that all of the theories of L are

finitely gently explosive (with respect to ©(A)). According to [18], Rule (B.1) can be

read as saying that ‘if A is consistent and contradictory, then it explodes’, and amounts

to a realization of the Finite Gentle Principle of Explosion.
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B.1.4 The mCi Logic

The mCi logic is another LFI presented in [18]. The motivation for its development

was to enrich mbC so as to be able to define an inconsistency connective by the direct

use of the paraconsistent negation, that is, by setting •A def
= ¬◦A. In mCi, •A and ¬•A

are logically indistinguishable from ¬ ◦ A and ◦A, respectively.

The logic mCi is obtained from mbC by the addition of the following axiom schemas:

(ci) ¬ ◦ A → (A ∧ ¬A);

(cc)n ◦¬n ◦ A (n ≥ 0).

To the above axiomatization is added the definition of an inconsistency connective • by

setting •A def
= ¬ ◦ A.

It is easy to verify (and it was shown in [18]) that A ∧ ¬A `mbC ¬ ◦ A. The converse

property does not hold in mbC and it was the first additional axiom (ci) added to obtain

mCi. So ¬◦A and (A∧¬A) are equivalent in mCi. To make formulas of the form ¬◦A

‘behave classically’, and to obtain a logic that is controllably explosive in contact with

formulas of the form ¬n ◦ A, where ¬0A
def
= A and ¬n+1A

def
= ¬¬nA, axioms (cc)n were

added to obtain mCi. With these axioms added, any formula of the form ¬n ◦A ‘behaves

classically’ and {¬n ◦A,¬n+1 ◦A} in an explosive theory in mCi. Much more about mCi

can be found in [18].

The following valuation for mCi was presented in [18]:

Definition B.1.3. An mCi-valuation is an mbC-valuation v : For◦ −→ 2 (see Defini-

tion B.1.2) satisfying, additionally, the following clauses:

(v6) v(¬ ◦ A) = 1 implies v(A) = 1 and v(¬A) = 1;

(v7.n) v(◦¬n ◦ A) = 1 for n ≥ 0.

The definition of satisfiability in Section B.1.1 also holds for mCi. In mCi, (•A) →
(A ∧ ¬A), which is by definition equal to (¬ ◦ A) → (A ∧ ¬A), is a tautology. In mbC,

the second formula is not a tautology.
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B.2 Tableau Systems

In this section we will present some tableau systems for the logical systems presented

in Section B.1. We will discuss their origin and motivation, present their rules, as well as

prove some properties. We will not discuss here some aspects of the tableau systems which

are relevant only for implementation. These aspects will be discussed in Appendix C.

B.2.1 Analytic Tableaux for CPL

The analytic tableau (AT) method, also known as semantic tableaux, is surely the most

studied tableau method. It was presented in [106] as “an extremely elegant and efficient

proof procedure for propositional logic”. According to [52], this method is a variant of

Beth’s “semantic tableaux” [5], and of Hintikka methods [60].

The AT for CPL is a sound and complete proof system for CPL [106]. Its expansion

rules (for the connectives in Σ) are presented in Figure B.1. This is the signed formula

version of the AT for CPL (an unsigned version is also presented in [106]). A signed

formula is an expression SX where S is called the sign and X is a propositional formula.

The symbols T and F, respectively representing the ‘true’ and ‘false’ truth-values, can be

used as signs. The conjugate of a signed formula TA (FA) is FA (TA). Following [29],

we shall call subformulas of a signed formula SA (where S ∈ {T ,F }) all the formulas of

the form TB or FB where B is a subformula of A.

B.2.2 A KE System for CPL

The KE inference system is a more recent tableau method [31]. It was developed by

Marco Mondadori and discussed in detail in several works authored or co-authored by

Marcello D’Agostino [28, 8, 29]. The KE system was presented as an improvement, in

the computational efficiency sense, over Analytic Tableaux. It is a refutation system that,

though close to the analytic tableau method, is not affected by the anomalies of cut-free

systems [29].

The KE system for CPL is a refutation system that is sound and complete. The
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TA → B
FA | TB

(T →)
FA → B
TA
FB

(F→)

FA ∧B
FA | FB

(F∧)
TA ∧B
TA
TB

(T∧)

TA ∨B
TA | TB

(T∨)
FA ∨B
FA
FB

(F∨)

T ¬A
FA

(T¬ )
F ¬A
TA

(F¬ )

Figure B.1: CPL AT rules.

first motivation for its development was to obtain a tableau method inline with classical

principles. In [29], D’Agostino argues that analytic tableau rules for CPL are not really

classical since one of the two principles that form the basis of the classical notion of

truth, the Principle of Bivalence, is not clearly present in that tableau system. The

Principle of Bivalence (also known as the Principle of the Excluded Middle) states that

every proposition is either true or false, and there are no other possibilities. The other

principle, the Principle of Non-contradiction, which asserts that no proposition can be true

and false at the same time, is embodied in the definition of closed branches in analytic

tableaus together with the rules for negation.

The second motivation for KE development was to design a computationally more effi-

cient system. Analytic tableau refutations are intrinsically redundant because, depending

on the problem being tackled, it is necessary to prove again the same subproblem one

or more times [29]. This difficulty is not related to any intrinsic difficulty of the prob-

lem considered but only to the redundant behavior of analytic tableau rules. Analytic

tableaux correspond to cut-free sequent calculus [56] while KE corresponds to sequent

calculus with Cut rule. Several families of problems have only exponential size proofs in

cut-free sequent calculus, but can have polynomial size proofs in sequent calculus with

Cut. Therefore, the KE system solves this limitation of analytic tableaux by presenting



B.2. TABLEAU SYSTEMS 26

a set of rules that does not have AT rules’ redundant behavior.

So what exactly is the main difference between the KE system and AT? A KE system

is a tableau system with only one branching rule, the Principle of Bivalence (PB) rule.

And although this rule resembles Gentzen’s sequent calculus [56] Cut rule, which is not

essential for the sequent calculus proof system, (PB) is not eliminable from KE.

The KE expansion rules for CPL are presented in Figure B.2. Notice that some rules

have two premises, some have one premise and the (PB) rule is a zero premise rule. We

say that the rules with two premises have a main premise (the more complex) and an

auxiliary premise. For rules with only one premise, this premise is also referred as main

premise. A linear rule is a rule which does not force branching. All KE rules are linear,

except the (PB) rule.

Some rules in Figure B.2 can be derived from others. For instance, if we have (T∨1)

and (PB) we can derive (T∨2). It is clear that the opposite is true: if we have (T∨2) and

(PB) we can derive (T∨1). This relationship also happens between (F∧1) and (F∧2), and

between (T→1) and (T→2).

TA → B
TA
TB

(T→1)
TA → B
FB
FA

(T→2)
FA → B
TA
FB

(F→)

FA ∧B
TA
FB

(F∧1)
FA ∧B
TB
FA

(F∧2)
TA ∧B
TA
TB

(T∧)

TA ∨B
FA
TB

(T∨1)
TA ∨B
FB
TA

(T∨2)
FA ∨B
FA
FB

(F∨)

T ¬A
FA

(T¬ )
F ¬A
TA

(F¬ )

TA | FA
(PB)

Figure B.2: CPL KE rules.
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B.2.3 A KE System for mbC

In [11], Caleiro et alli exhibit a way of effectively constructing the two-valued semantics

of any logic that has a truth-functional finite-valued semantics and a sufficiently expressive

language. From there, one can provide those logics with adequate canonical systems of

sequents or tableaux. The method permits one to obtain a complete tableau system for

any propositional logic which has a complete semantics given through the so-called ‘dyadic

valuations’. In [18], sound and complete tableau systems for mbC and mCi obtained by

using this general method are presented4. Let us call these systems C3M tableau systems.

The C3M tableau system rules for mbC are shown in Figure B.3. It is easy to

notice that the rules for the binary connectives in Σ are the same as that from AT (see

Figure B.1). It also has AT (F¬ ) rule but does not have AT (T¬ ) rule. To compensate

for this, it has two additional rules: a branching rule similar to KE (PB) rule, and a (T◦)
rule. In total, this tableau system has 5 branching rules.

TA → B
FA | TB

(T →)
FA → B
TA
FB

(F→)

FA ∧B
FA | FB

(F∧)
TA ∧B
TA
TB

(T∧)

TA ∨B
TA | TB

(T∨)
FA ∨B
FA
FB

(F∨)

T ◦ A
FA | F ¬A

(T◦) F ¬A
TA

(F¬ )

TA | FA
(PB)

Figure B.3: mbC C3M tableau rules.

As explained in [29], branching rules lead to inefficiency. To obtain a more efficient

proof system, we used the C3M tableau system for mbC as a basis to devise an original

4Some tableau systems for logics of formal inconsistency had already been presented in [15].
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mbC KE system. The rules are presented in Figure B.4. The only difference between

this system and the KE system for CPL is the replacement of the CPL KE (T¬ ) rule

by the KE (T¬ ′) rule. Notice that the KE (T¬ ′) rule is a LFI version of CPL KE

(T¬ ). It states clearly that besides T ¬A, we need to have T ◦ A to obtain FA.

TA → B
TA
TB

(T→1)
TA → B
FB
FA

(T→2)
FA → B
TA
FB

(F→)

FA ∧B
TA
FB

(F∧1)
FA ∧B
TB
FA

(F∧2)
TA ∧B
TA
TB

(T∧)

TA ∨B
FA
TB

(T∨1)
TA ∨B
FB
TA

(T∨2)
FA ∨B
FA
FB

(F∨)

T ¬A
T ◦ A
FA

(T¬ ′)
F ¬A
TA

(F¬ )

TA | FA
(PB)

Figure B.4: mbC KE rules.

Example B.2.1. In Figure B.5 we show a proof of ◦A, ◦C,A → ◦B, B → C, (¬B) →
(D → ¬A) ` ¬(A∧¬C ∧D). Notice that to obtain 17 from 16 we used the optional rule

Ffor (a derived rule presented in Section C.2.4).

Analyticity, Correctness and Completeness Proof

A tableau proof enjoys the subformula property if every signed formula in the proof

tree is a subformula of some formula in the list of signed formulas to be proved. Let

us call analytic the applications of (PB) which preserve the subformula property. And

the analytic restriction of a tableau system is the system obtained by restricting (PB) to

analytic applications.
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1 T ◦ A
2 T ◦ C
3 T A → ◦B
4 T B → C
5 T (¬B) → (D → ¬A)
6 F ¬(A ∧ ¬C ∧D)
7 T A ∧ ¬C ∧D
8 T A
9 T ¬C ∧D
10 T ¬C
11 T D
12 T ◦B

13 TB
14 TC
15 FC

×

16 FB
17 T ¬B
18 TD → ¬A
19 T ¬A
20 FA

×
Figure B.5: An mbC KE proof.

Given a rule R of an expansion system S, we say that an application of R to a branch

θ is analytic when it has the subformula property, i.e. if all the new signed formulas

appended to the end of θ are subformulas of signed formulas occurring in θ. According to

[29], a rule R is analytic if every application of it is analytic. When the analytic restriction

of a tableau system is sound and complete we say that this system is analytic (and that

we have proved the system’s analyticity).

Our intention here is to prove that the mbC KE system is analytic, sound and

complete. As we have seen in Section B.2.3, the mbC KE system originated from the

CPL KE system and the C3M tableau system. It is easy to notice that all CPL KE

rules, except (PB), are analytic. And although (PB) is not analytic, the KE system for

CPL was proven to be analytic, sound and complete [29]. On the other hand, the C3M

tableau system for mbC has two non-analytic rules: (PB) and (T◦). It is sound and

complete [18, 11] but there is no proof either that it is analytic or not analytic.

It is easy to show a procedure that transforms any proof in the C3M tableau system

for mbC in an mbC KE proof, thus proving that mbC KE system is also sound and

complete. We will not do this here. Instead, we will prove directly that the mbC KE
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system is sound, complete and also analytic.

Proving that analytic restriction of mbC KE is sound and complete is a little bit more

difficult than proving that CPL KE is analytic, because mbC KE has a two-premise rule,

the (T¬ ′) rule, where neither premise is a subformula of the other premise, a condition

satisfied by all CPL KE two-premise rules.

Because of this feature of the (T¬ ′) rule, it could be necessary to have non-analytic

applications of the (PB) rule. But that is not the case: when performing an mbC KE

proof we can restrict ourselves to analytic applications of (PB), applications which do

not violate the subformula property, without affecting completeness. In this way, we

demonstrate that even the analytic restriction of mbC KE is sound and complete.

The proof will be as follows. First we will define the notion of downward saturatedness

for mbC. Then we will prove that every downward saturated set is satisfiable. The mbC

KE proof search procedure for a set of signed formulas S either provides one or more

downward saturated sets that give a valuation satisfying S or finishes with no downward

saturated set.

Therefore, if an mbC KE tableau for a set of formulas S closes, then there is no

downward saturated set that includes it, so S is unsatisfiable. However, if the tableau is

open and completed, then any of its open branches can be represented as a downward

saturated set and be used to provide a valuation that satisfies S. By construction, down-

ward saturated sets for open branches are analytic, i.e. include only subformulas of S. We

then conclude that the mbC KE system is analytic. As a corollary, it is also sound and

complete.

Note: some concepts used in this proof are defined in Section C.2.1.

Definition B.2.1. A set of mbC signed formulas DS is downward saturated if

1. whenever a signed formula is in DS, its conjugate5 is not in DS;

2. when all premises of any mbC KE rule (except (PB)) are in DS, its conclusions

are also in DS;

5For any formula A The conjugate of T A is F A, and vice-versa.
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3. when the major premise of a two-premise mbC KE rule is in DS, either its auxiliary

premise or its conjugate is in DS. For mbC KE, this item is valid for every rule

except (T¬ ′). In this case, if T ¬X (which we define as the major premise in (T¬ ′))

is in DS, either T ◦ X or F ◦ X can be in DS, but only if ◦X is a subformula of

some other formula in DS. If ◦X is not a subformula of some other formula in DS,

neither T ◦X nor F ◦X are in DS.

We can extend valuations to signed formulas in an obvious way: v(TA) = v(A) and

v(FA) = 1−v(A). A set of signed formulas L is satisfiable if it is not empty and there is a

valuation such that for every formula SX ∈ L, v(SX) = 1. Otherwise, it is unsatisfiable.

Lemma B.2.2. (Hintikka’s Lemma for mbC) Every mbC downward saturated set

is satisfiable.

Proof. For any downward saturated set DS, we can easily construct an mbC valuation v

such that for every signed formula SX in the set, v(SX) = 1. How can we guarantee this

is in fact an mbC valuation? First, we know that there is no pair TX and FX in DS.

Second, all premised mbC KE rules preserve mbC valuations. That is, if v(SXi) = 1

for every premise SXi, then v(SCj) = 1 for all conclusions Cj. And if v(SX1) = 1

and v(SX2) = 0, where X1 and X2 are, respectively, major and minor premises of an

mbC KE rule, then v(S ′X2) = 1, where S ′X2 is the conjugate of SX2. For instance,

suppose TA ∧ B ∈ DS, then v(TA ∧ B) = 1. In accordance with the definition of

downward saturated sets, {TA,TB} ⊆ DS. And by the definition of mbC valuation,

v(TA ∧B) = 1 implies v(TA) = v(TB) = 1.

Theorem B.2.3. Let DS’ be a set of signed formulas. DS’ is satisfiable if and only

if there exists a downward saturated set DS” such that DS’ ⊆ DS”.

Proof. (⇐) First, let us prove that if there exists a downward saturated set DS” such that

DS’ ⊆ DS”, then DS’ is satisfiable. This is obvious because from DS” we can obtain a

valuation that satisfies all formulas in DS”, and DS’ ⊆ DS”.

(⇒) Now, let us prove that if DS’ is satisfiable, there exists a downward saturated set
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DS” such that DS’ ⊆ DS”.

So, suppose that DS’ is satisfiable and that there is no downward saturated set DS”

such that DS” ⊆ DS’. Using items (2) and (3) of (B.2.1), we can obtain a family of sets of

signed formulas DS’i (i ≥ 1) that include DS’. If none of them is downward saturated, it

is because for all i, {TX,FX} ∈DS’i for some X. But all rules are valuation-preserving,

so this can only happen if DS is unsatisfiable, which is a contradiction.

Corollary B.2.4. DS’ is an unsatisfiable set of formulas if and only if there is no

downward saturated set DS” such that DS’ ⊆ DS”.

Theorem B.2.5. The mbC KE system is analytic.

Proof. The mbC KE proof search procedure for a set of signed formulas S either provides

one or more downward saturated sets that give a valuation satisfying S or finishes with no

downward saturated set. If an mbC KE tableau for a set of formulas S closes, then there is

no downward saturated set that includes it, so S is unsatisfiable. If the tableau is open and

completed, then any of its open branches can be represented as a downward saturated set

and be used to provide a valuation that satisfies S. By construction, downward saturated

sets for open branches are analytic, i.e. include only subformulas of S. Therefore, the

mbC KE system is analytic.

Corollary B.2.6. The mbC KE system is sound and complete.

Proof. The mbC KE system is a refutation system, as most tableau systems. The mbC

KE system is sound because if an mbC KE tableau for a set of formulas S closes, then S

is unsatisfiable. And if the tableau is open and completed, S is satisfiable. This has been

shown in the proof of the theorem above. It is complete because if S is satisfiable, no

mbC KE tableau for a set of formulas S closes. And if S is unsatisfiable, all completed

mbC KE tableau for S close.
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B.2.4 A KE System for mCi

A tableau system for mCi, the C3M system for mCi, was presented in [18] as an

extension of the C3M mbC system. Its rules are shown in Figure B.6. This system has

a new rule called (T¬◦) that corresponds to the axiom (cc) (see mCi axiomatization in

Section B.1.4) and rules (T ◦ ¬ n◦), for n ≥ 0, that correspond to axioms (cc)n.

TA → B
FA | TB

(T →)
FA → B
TA
FB

(F→)

FA ∧B
FA | FB

(F∧)
TA ∧B
TA
TB

(T∧)

TA ∨B
TA | TB

(T∨)
FA ∨B
FA
FB

(F∨)

T ◦ A
FA | F ¬A

(T◦) F ¬A
TA

(F¬ )

T ¬ (◦A)
TA
T ¬A

(T¬◦)
T ◦ (¬ n(◦A)) for (n≥0)

(T ◦ ¬ n◦)

TA | FA
(PB)

Figure B.6: mCi C3M tableau rules.

As we have done for mbC, we use the C3M tableau system for mCi as a basis to

devise an original mCi KE system. mCi KE rules are presented in Figure B.7. We can

see this system as an extension of the mbC KE system, where we include the (T¬◦) rule

and the new (F ◦ ¬ n◦) rules, for n ≥ 0. These (F ◦ ¬ n◦) rules were motivated by the

same axioms that motivated (T ◦ ¬ n◦) rules, with the advantage of being analytic. The

(T¬◦) rule, however, is not analytic. So neither C3M for mCi nor mCi-KE are analytic

proof systems.

Example B.2.2. In Figure B.8 we show an example of an mCi KE non analytic proof:
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TA → B
TA
TB

(T→1)
TA → B
FB
FA

(T→2)
FA → B
TA
FB

(F→)

FA ∧B
TA
FB

(F∧1)
FA ∧B
TB
FA

(F∧2)
TA ∧B
TA
TB

(T∧)

TA ∨B
FA
TB

(T∨1)
TA ∨B
FB
TA

(T∨2)
FA ∨B
FA
FB

(F∨)

T ¬A
T ◦ A
FA

(T¬ ′)
F ¬A
TA

(F¬ )

T ¬ (◦A)
TA
T ¬A

(T¬◦) F ◦ (¬ n(◦A))
× for (n≥0)

(F ◦ ¬ n◦)

TA | FA
(PB)

Figure B.7: mCi KE rules.



B.2. TABLEAU SYSTEMS 35

a proof of ◦A ` ¬¬ ◦A. The formula number 5 is not a subformula of any formula in the

sequent being proved.

Example B.2.3. In Figure B.9 we show another example of a non analytic proof of

¬¬ ◦ A ` ◦A. In fact, it is not possible to prove this sequent in mCi KE without a non

analytic application of the (PB) rule.

1 T ◦ A
2 F ¬¬ ◦ A
3 T ¬ ◦ A
4 T A
5 T ¬A
6 F A

×

Figure B.8: An mCi KE proof of ◦A ` ¬¬ ◦ A.

T ¬¬ ◦ A
F ◦ A

T ◦ ¬ ◦ A
F ¬ ◦ A
T ◦ A
×

F ◦ ¬ ◦ A
×

Figure B.9: An mCi KE proof of ¬¬ ◦ A ` ◦A.

Correctness and Completeness Proof

Our intention here is to prove that the mCi KE system is sound and complete. It

seems clear to us that the mCi KE system is not analytic, because of its (T¬◦) rule,

which is not analytic. We will follow the same schema used in Section B.2.3.

Definition B.2.7. A set of mCi signed formulas DS is downward saturated:

1. whenever a signed formula is in DS, its conjugate is not in DS;

2. when all premises of any mCi KE rule (except (PB) and (F ◦ ¬ n◦), for n ≥ 0) are

in DS, its conclusions are also in DS;
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3. when the major premise of a two-premise mCi KE rule is in DS, either its auxiliary

premise or its conjugate is in DS. And the same condition for the (T¬ ′) rule that

holds in Definition B.2.1 also holds here: if T ¬X is in DS, either T ◦X or F ◦X

can be in DS, but only if ◦X is a subformula of some other formula in DS. If ◦X
is not a subformula of some other formula in DS, neither T ◦X nor F ◦X are in

DS;

4. if a signed formula S X is in DS, then for any sign S, for any formula X, for all

subformulas Y of X and for all n ≥ 0, the signed formula T ◦ ¬n ◦ Y is in DS.

The Hintikka’s Lemma also holds for mCi downward saturated sets:

Lemma B.2.8. (Hintikka’s Lemma for mCi) Every mCi downward saturated set is

satisfiable.

Proof. For any downward saturated set DS, we can easily construct an mCi valuation

v such that for every signed formula SX in the set, v(SX) = 1. How can we guarantee

this is in fact a valuation? First, we know that there is no pair TX and FX in DS.

Second, all premised mCi KE rules (except (F ◦ ¬ n◦) rules) preserve valuations. Note

that (F ◦¬ n◦) rules are taken into account by the last clause in Definition B.2.7. That is,

if we have a set of signed formulas that contains F ◦ ¬n ◦X, every downward saturated

set that contains this set should also contain T ◦ ¬n ◦ X. Therefore it is not downward

saturated. To be downward saturated a set DS must contain, for all its subformulas6 X,

T ◦¬n ◦X (and must not contain any F ◦¬n ◦X). As we can see in clause (v7.n) of the

mCi valuation definition (see Definition B.1.3), v(T ◦ ¬n ◦X) = 1 for all X. Therefore,

DS is satisifable.

Theorem B.2.3 and Corollary B.2.4 also hold for mCi downward saturated sets.

Theorem B.2.9. The mCi KE system is sound and complete.

Proof. The mCi KE proof search procedure for a set of signed formulas S either provides

6To be precise, by the subformulas of a set of signed formulas {SiFi}, where Si is a sign and Fi is an
unsigned formula, we mean the set of subformulas of {Fi}.
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one or more downward saturated sets that give a valuation satisfying S or finishes with

no downward saturated set. The mCi KE system is a refutation system. The mCi KE

system is sound because if an mCi KE tableau for a set of formulas S closes, then there

is no downward saturated set that includes it, so S is unsatisfiable. If the tableau is open

and completed, then any of its open branches can be represented as a downward saturated

set and be used to provide a valuation that satisfies S (in other words, S is satisfiable).

The mCi KE system is complete because if S is satisfiable, no mCi KE tableau for

a set of formulas S closes. And if S is unsatisfiable, all completed mCi KE tableau for

S close.

B.3 Complexity of Logical Systems

In this section, we are going to discuss some issues related to the complexity of logical

systems. We begin with the complexity of decision problems.

B.3.1 Complexity of Decision Problems

The CPL satisfiability problem (known as ‘SAT’) is a decision problem studied in

complexity theory. A decision problem is a problem that can be answered by ‘yes’ or

‘no’. SAT can be described as “given a propositional formula, decide whether or not it

is satisfiable”. Many other decision problems, such as graph coloring problems, planning

problems, and scheduling problems can be encoded into SAT.

SAT was the first known NP-complete problem. The class of NP-complete problems

is a subclass of NP. While P is the class of decision problems that can be solved in

polynomial time by a deterministic algorithm, NP is the class of decision problems that

can be solved in polynomial time by a nondeterministic algorithm. Therefore P ⊆ NP.

The problems in NP are such that positive solutions can be verified in polynomial time.

NP-complete problems are the most difficult problems in NP, the ones most likely not to

be in P. If we find a polynomial time algorithm for any NP-complete problem, we can

solve all problems in NP in polynomial time, because there is a polynomial time reduction
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from any NP problem into any NP-complete problem.

The complement of a decision problem is the decision problem resulting from reversing

the ‘yes’ and ‘no’ answers. We can generalize this to the complement of a complexity class,

called the complement class, which is the set of complements of every problem in the class.

co-NP is the complement of the complexity class NP. It is the class of problems for which

a ‘no’ answer can be verified in polynomial time. And co-NP-complete is the complement

of the class of NP-complete problems.

mCi is co-NP-complete

The CPL decision problem (“given a propositional formula, decide whether or not it

is a tautology”) is co-NP-complete, because a formula in CPL is a tautology if and only

if its negation is unsatisfiable. In [18], it was shown that the decision problem for mbC

is also co-NP-complete.

As the mbC decision problem is co-NP-complete and mCi extends mbC, the mCi

decision problem is co-NP-hard. To prove that the mCi decision problem is also co-

NP-complete (as suggested in [18]) we need a NP algorithm for the complement of mCi

decision: the falsification of a formula. That is, we must show that given a formula A and

a mCi-valuation v it is possible to verify if v(A) = 0 in polynomial time.

Let A be an mCi formula. We show below how to construct an mCi-valuation v for

A. This is here only to show that it is more difficult to build an mCi-valuation than a

CPL-valuation.

Let SSF(A) be the set of all strict subformulas of A. A strict subformula of A is any

subformula of A except A itself. Then we construct a new set ESSF(A), such that for all

X ∈ SSF(A), X, ◦X and ¬X belong to ESSF(A).

If n is the size of A, then the size of ESSF(A) is at most 3(n−1). To build a valuation

v for A we must, for any X ∈ ESSF(A), set v(X) either to 0 or to 1, obbeying the

mCi-valuation clauses presented in Definition B.1.3.

Up to now, we have only v(X) for all X ∈ ESSF(A) (not necessarily a value for v(A)).

The following algorithm allows us to find a value for v(A):
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1. if, for some X, A is ◦X, then:

(a) if v(¬X) = 0, then v(X) = 1 and v(A) can be set either to 0 or to 1;

(b) if v(X) = 1 and v(¬X) = 1, then v(A) = 0;

(c) if v(X) = 0 and v(¬X) = 1, then v(A) can be set either to 0 or to 1;

2. if, for some X, A is ¬X, then:

(a) if v(X) = 1 then:

i. if v(◦X) = 1 then v(A) = 0;

ii. if v(◦X) = 0 then v(A) can be set either to 0 or to 1;

(b) if v(X) = 0 then v(A) = 1;

3. if, for some X, Y , A is X ∧ Y , then:

(a) if v(X) = 1 and v(Y ) = 1, then v(A) = 1;

(b) otherwise, v(A) = 0;

4. if, for some X, Y , A is X ∨ Y , then:

(a) if v(X) = 0 and v(Y ) = 0, then v(A) = 0;

(b) otherwise, v(A) = 1;

5. if, for some X, Y , A is X → Y , then:

(a) if v(X) = 0 and v(Y ) = 1, then v(A) = 0;

(b) otherwise, v(A) = 1.

Therefore, it is more difficult to build an mCi-valuation than a CPL-valuation7. But,

given a formula A, if we have a valuation for all formulas in ESSF(A), it is easy to verify

that v(A) can be 0. The algorithm above is clearly polynomial in time (and also in

space). As the NP class contains the problems that can be verified in polynomial time

[26], the complement of the decision problem (falsification) for mCi is in NP. Therefore,

the decision problem for mCi is co-NP-complete.

7A CPL-valuation can be built by setting values only to atomic formulas (see Definition B.1.1).
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B.3.2 Complexity of Theorem-Proving Procedures

Besides the complexity of decision problems for logics, the complexity of theorem-

proving procedures [23] and the length of proofs in CPL [22] has also been extensively

studied. Given a possible tautology, we are faced with the problem of finding a proof, if

one exists [7]. Then we encounter two additional problems: the first is concerned with

the complexity of the proof search while the second with the complexity of the smallest

possible proof, which might be exponential in the size of the tautology.

The complexity of proof search algorithms is obviously related to the complexity of the

smallest possible proof. For instance, if the smallest proof is exponential in size, the proof

search has to be exponential. But sometimes even when the proof system has polynomial

size proofs for some classes of problems, current algorithms can be exponential, because

it is harder to find the smallest proofs in stronger proof systems.

To study the length of CPL proofs, some families of problems that are known to be

difficult are used. The pigeon hole principle (PHP) family of problems is probably the

most studied of such families. Some works have shown that there are polynomial size

proofs of this problem in some propositional proof systems [9, 24].

The resolution method [100] is the most widely studied propositional proof system.

It can also be used for first-order classical logic and is implemented by many theorem

provers, such as OTTER [77] and Vampire [98]. Resolution has exponential lower bounds

for PHP and other classes of formulas [58, 113]. That is, all resolution proofs of PHP are

exponential in length.

Another famous and successful decision procedure for CPL is the Davis-Logemann-

Loveland (DLL) procedure [32]. Its modern variants, such as Chaff [83], are used in the

most efficient SAT provers. However, these provers perform poorly on many important

families of problems, including PHP. The most competitive SAT solvers show exponential

scaling on these simple structured problems. This happens because DLL is based on tree

resolution, a variant of resolution. Because of that, the proof search procedure of DLL

also has exponential complexity.

Some extensions of DLL (see [40] for a good coverage) make it stronger than tree
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resolution, but not stronger than resolution. Therefore, one solution to achieve shorter

PHP proofs is to use stronger proof systems. However, as we said before, sometimes

even when the proof system has polynomial size proofs for some classes of problems,

current algorithms can be exponential, because it is harder to find proofs in stronger proof

systems. In [40], a DLL style satisfiability solver that uses pseudo-Boolean representation

and automates cutting plane [25], an inference system properly stronger than resolution,

is presented. This pseudo-Boolean solver allowed exponential speedups over traditional

methods on PHP problems.

Complexity of Tableau Methods

The complexity of Analytic Tableaux (AT) has been much studied [22, 2, 76]. For in-

stance, Cook and Reckhow established in [22] that the family Σn of unsatisfiable formulas

gives a lower bound of 2Ω(2n) on the proof size with AT. Later, Massacci [76] exhibited

an AT proof for Σn for whose size he proved an upper bound of O(2n2
), which, although

not polynomial in the size O(2n) of the input, is exponentially shorter than the claimed

lower bound.

The KE system was proven to be more efficient than Smullyan’s tableaux in [29].

There, a simple refutation procedure for KE was defined and called canonical procedure.

And the canonical restriction of KE was defined as KE used with this canonical proof

search procedure. The canonical restriction of KE can polinomially simulate the ana-

lytic tableau method, but the tableau method cannot polinomially simulate the canonical

restriction of KE. In other words, for each analytic tableau proof of size n, there is a KE-

Tableau proof with size polynomial in n. But there is at least one proof in KE-Tableau

of size n whose corresponding proof in Analytic Tableaux has size superpolynomial in n.

Besides that, the KE system polinomially simulates the truth-table procedure, although

the analytic tableau method does not.

The KE system is more efficient than AT because it is based on Sequent Calculus

with Cut, while the analytic tableau method is based on cut-free Sequent Calculus. It is

well known that several families of problems have only exponential size proofs in cut-free
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Sequent Calculus, but can have polynomial size proofs in Sequent Calculus with Cut. The

set of rules for the KE system has only one rule of the branching type, the (PB) rule.

Even if we add this rule to the analytic tableau method, it is not difficult to construct

with this extended system short refutations of the ‘hard examples’ for Smullyan’s tableaux

[29]. However, in this system the (PB) rule is dispensable, while in KE formulation it is

essential.

The complexity of KE deserves more study. According to [29], “a detailed study of

proof-search in the KE system will have to involve more sophisticated criteria for the

choice of the (PB)-formulae. A good choice may sometimes be crucial for generating

essentially shorter proofs than those generated by the analytic tableau method”.
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